게시판         학술행사/연구정보

[안내]한국방송통신대학교 통계·데이터과학과 + 한국통계학회 분류연구회 공동 세미나 개최 안내

조회수 : 450
한국방송통신대학교 통계·데이터과학과와 한국통계학회 분류연구회에서는 다음과 같이 (온라인) 세미나를 공동으로 개최하고자 합니다.
참석하고자 하시는 분들께서는 아래 구글폼 설문양식을 작성하여 제출해 주시기 바랍니다. 많은 관심과 참여 부탁드립니다.


1. 주제 : A Regression Tree Approach to Analysis of Incomplete Data


2. 강연자 : Professor Wei-Yin Loh, Department of Statistics, University of Wisconsin, Madison, USA


3. 강의언어 : 영어

4. 진행방식 : 온라인(ZOOM)

5. 초록 : 
Analyzing data with missing values is arguably the hardest problem in statistics.  Statistical methods are often designed for completely observed data and are inapplicable if some values are missing.  Although there are many techniques for imputation of missing values, the statistical properties of the resulting fitted models are unknown, except in special situations that require unverifiable and likely unjustifiable assumptions, such as "missing at random" (MAR) and "no unobserved confounding".
Using a large dataset of electronic health records of Covid-19 patients and a national consumer expenditure survey, this talk aims to show that (1) missing data should not be routinely imputed, as missingness itself can contain useful information that imputation destroys, (2) non-trivial imputation is impractical when the amount of missing data is overwhelming, and (3) the GUIDE classification and regression tree easily overcomes these difficulties. GUIDE is unique among tree algorithms in many respects, including its ability to totally avoid imputation of missing data and to explicitly display the effect of missing values in its decision tree diagrams. Literature on GUIDE and its accompanying software may be obtained at https://pages.stat.wisc.edu/~loh/guide.html.

6. 신청양식 안내

   1) 설문 항목 : 이메일 / 소속(단답식) / 이름 / 연락처(핸드폰번호) / 참석 희망 여부
   2) 신청 기간 : ~8/25(일) 까지
   
3) 안내 방법 :  2024년 08월 26일(월) 15:00 이후 설문지 작성 시 작성한 이메일로 발송
   4) 설문 링크 : https://forms.gle/bGWBiqcSRb9WQ3st9
목록